Exact Elasticity Solutions for Thick-Walled FG Spherical Pressure Vessels with Linearly and Exponentially Varying Properties
Authors
Abstract:
In this paper, exact closed-form solutions for displacement and stress components of thick-walled functionally graded (FG) spherical pressure vessels are presented. To this aim, linear variation of properties, as an important case of the known power-law function model is used to describe the FG material distribution in thickness direction. Unlike the pervious studies, the vessels can have arbitrary inner to outer stiffness ratio without changing the function variation of FGM. After that, a closed-form solution is presented for displacement and stress components based on exponential model for variation of properties in radial direction. The accuracy of the present analyses is verified with known results. Finally, the effects of non-homogeneity and different values of inner to outer stiffness ratios on the displacement and stress distribution are discussed in detail. It can be seen that for FG vessels subjected to internal pressure, the variation of radial stress in radial direction becomes linear as the inner stiffness becomes five times higher than outer one. When the inner stiffness is half of the outer one, the distribution of the circumferential stress becomes uniform. For the case in which the external pressure is applied, as the inner to outer shear modulus becomes lower than 1/5, the value of the maximum radial stress is higher than external pressure.
similar resources
Effect of Material Gradient on Stresses of Thick FGM Spherical Pressure Vessels with Exponentially-Varying Properties
Using the Frobenius series method (FSM), an analytical solution is developed to obtain mechanical stresses of thick spherical pressure vessels made of functionally graded materials (FGMs). The cylinder pressure vessel is subjected to uniform internal pressure. The modulus of elasticity is graded along the radial direction according to power functions of the radial direction. It is assumed that ...
full textElastic analysis of functionally graded rotating thick cylindrical pressure vessels with exponentially-varying properties using power series method of Frobenius
Based on the Frobenius series method, stresses analysis of the functionally graded rotating thick cylindrical pressure vessels (FGRTCPV) are examined. The vessel is considered in both plane stress and plane strain conditions. All of the cylindrical shell properties except the Poisson ratio are considered exponential function along the radial direction. The governing Navier equation for this pro...
full textFluidity Onset Analysis in FG Thick-Walled Spherical Tanks under Concurrent Pressure Loading and Heat Gradient
In this paper,fluidity onset analysis in FG thick-walled spherical tanks under concurrent pressure loading and heat gradient has been presented. Designing thick-walled spherical tanks under pressure as tanks holding fluids under heat loads with high heat gradients require new approaches. Under high internal pressure and high temperature, the tank enters the plastic stage in a part of its thickn...
full textElasto-plastic solution for thick-walled spherical vessels with an inner FGM layer
Purely elastic, partially and fully plastic stress states in a thick-walled spherical pressure vessel with an inner functionally graded material (FG) coating subjected to internal and external pressures are developed analytically in this paper. The modulus of elasticity and the uniaxial yield limit of the FG coating layer are considered to vary nonlinearly through the thickness. Using Tresca’s ...
full textEffect of Exponentially-Varying Properties on Displacements and Stresses in Pressurized Functionally Graded Thick Spherical Shells with Using Iterative Technique
A semi-analytical iterative method as one of the newest analytical methods is used for the elastic analysis of thick-walled spherical pressure vessels made of functionally graded materials subjected to internal pressure. This method is accurate, fast and has a reasonable order of convergence. It is assumed that material properties except Poisson’s ratio are graded through the thickness directio...
full textElastic analysis for thick cylinders and spherical pressure vessels made of functionally graded materials
Article history: Received 8 April 2007 Received in revised form 19 April 2008 Accepted 22 April 2008 Available online 9 June 2008
full textMy Resources
Journal title
volume 22 issue 4
pages 405- 416
publication date 2009-11-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023